Investigating Implausible Bloomberg Supermicro Stories


Bloomberg Sources Raise Questions

Over the two articles, Bloomberg cites a number of sources. Let us take a tally:

  • Six current and former national security officials
  • Three insiders at Apple
  • Six former (Supermicro) employees
  • One executive of a large web-hosting company
  • The person or persons familiar with Amazon’s probe (none from Amazon were cited)
  • Joe Grand
  • Joe Fitzpatrick
  • Perhaps others, but the anonymity makes it difficult to trace.

Assuming that the Apple, Supermicro, and national security officials are all distinct, as is the executive at a large web-hosting company, that is sixteen sources. The Amazon source was called a person familiar with the probe, but we do not know if that is one of the sixteen sources. Joe Grand and Joe Fitzpatrick were cited, but including them would mean we had an overlap of the first sixteen or we actually have eighteen sources.

Let us dissect that list and see what has been said after the article’s publication.

Government Security Officials Cast Doubt

In the original piece, the FBI and the Office of the Director of National Intelligence declined to comment on the story. Since then the FBI and the Department of Homeland Security in the US and the UK NCSC have all commented, suggesting that they had no evidence to support Bloomberg’s claims. Likewise, officials at the NSA have also not seen supporting evidence, nor has the Director of National Intelligence, Dan Coats. Those are fairly big governmental sources. However, there are “six current and former senior national security officials” cited by Bloomberg anonymously supporting the story.

These sources seem to be where Bloomberg is getting its functionality details from. These are the same details that we have shown earlier in this article technically do not align with reality.

Apple Calls Bloomberg Untrue and Calls for Retraction

“Three senior insiders at Apple” are cited in the piece. Although those are anonymous sources, Tim Cook has now called the Bloomberg piece not truthful. This is after a forensic investigation including looking into e-mail records. Comments like these are not made mistakenly. If Mr. Cook made the statement, one can assume it has been thoroughly vetted within Apple.

Apple cited the reporters at Bloomberg as being confused in their initial response. An obvious question is how there could be multiple senior insiders at Apple involved, along presumably with their subordinates who are handling the hardware and security, and a forensic investigation turns up nothing at Apple? This is also not an anonymous PR denial, this is Tim Cook as CEO saying that Bloomberg’s efforts were poor putting together the story and not truthful in their portrayal.

Amazon AWS Response Makes Sense

Amazon Web Services issued a specific response calling Bloomberg’s article “untrue.” In that response, they talk about BMC security flaws that are mitigated through patches or by using the BMCs on a properly configured network. We discussed this proper configuration as it is the default configuration for organizations who run servers. Again, for a high-level overview, we have a basic guide on how this works. If this is a BMC hack, Amazon’s response makes sense as does Apple’s.

Supermicro Responds More Strongly

Supermicro issued a blanket and specific denial. They have gone a step further and sent out a letter from Charles Liang, CEO of Supermicro that is clear and unambiguous:

We are confident that a recent article, alleging a malicious hardware chip was implanted during the manufacturing process of our motherboards, is wrong. From everything we know and have seen, no malicious hardware chip has been implanted during the manufacturing of our motherboards.

We trust you appreciate the difficulty of proving that something did not happen, even though the reporters have produced no affected motherboard or any such malicious hardware chip. As we have said firmly, no one has shown us a motherboard containing any unauthorized hardware chip, we are not aware of any such unauthorized chip, and no government agency has alerted us to the existence of any unauthorized chip. (Source: Supermicro CEO Letter to Customers Dated October 18, 2018.)

Supermicro in the same letter also explains the difficulties we noted with placing additional wires on a motherboard. This type of declaration is far from “no comment.”

OVH (Major Web Host?) Investigates and Responds

OVH is a major web hosting company and the cloud provider that bought VMware’s vCloud Air. The company makes its own servers and utilizes many Supermicro motherboards. OVH has also said that they have investigated and did not find tampering. We do not know if OVH is the large web-hosting company executive source, but it would be the first company we would think of given that description.

This one is a mystery, but if you were targeting 30 companies and a large web host that uses Supermicro is one of them, OVH would be at or near the top of that list.

Named Sources React to Bloomberg’s Reporting

Joe Grand, a cybersecurity expert noted in the article for talking about the implausibility of being able to pull this off. Later, Mr. Grand noted that traffic would be seen if there was indeed a command and control structure, that nobody seems to have found. Joe Grand’s take:

That does not exactly support Bloomberg’s claims.

Likewise, Joe Fitzpatrick was named in the article. If you hear his interview with Risky Business, he says he is uncomfortable with how Bloomberg reported the story. He also said that the way that Bloomberg presented the hack did not make sense.

In a follow-up piece, Bloomberg brought another, completely different, hack to light citing Yossi Appleboum. I spoke to Mr. Appleboum and he was angry with what happened to Bloomberg’s story. He also noted that he told Bloomberg that this impacted many vendors, not just Supermicro and that it was likely done after manufacturing, while the servers were in-transit to the data center. Here is an excerpt from both showing the juxtaposition of Bloomberg’s portrayal in that second piece and my interview:

Fact Checking Bloombergs Second Supermicro Story Portrayal
Fact Checking Bloomberg’s Second Supermicro Story Portrayal

During this investigation, I was personally shocked by how starkly Bloomberg’s reporting and Mr. Appleboum contrasted. Read Yossi Appleboum on How Bloomberg is Positioning His Research Against Supermicro and draw your own conclusion.

We will let our readers decide if there is a clear pattern when the only named sources and source companies in the investigation are less than supportive of Bloomberg’s reporting.

Six Anonymous Former Supermicro Employees

We know at least six sources are former Supermicro employees. Here is an excerpt:

The majority of its workforce in San Jose is Taiwanese or Chinese, and Mandarin is the preferred language, with hanzi filling the whiteboards, according to six former employees.(Source: Bloomberg)

We are not going to print the rest of the section because it paints the employees in a way trying to tie them to China and Taiwan. This may be part of Bloomberg’s agenda with the piece, but we are not going to publish comments that are trying to incite a feeling about a company due to the ethnicity or cultural backgrounds of its employees.

Since I personally spend time at Supermicro interacting with their teams for reviews, I can say that Mandarin is used. Supermicro, like many hardware companies, has an office and production facility in Taiwan, so it is true having language skills helps. If you are in this industry, you need someone on your team that speaks Mandarin and English. That is now table stakes in the technology industry. That Supermicro Customer Letter cited above is from Charles Liang but is also signed by David Weigand, SVP and Chief Compliance Officer, and Raju Penumatcha, SVP and Chief Compliance Officer. Mr. Weigand and Mr. Penumatcha are not going to hold a conversation in Mandarin first, nor is Kevin Bauer (CFO) or Don Clegg (SVP of Worldwide Sales.)

Located in Silicon Valley, there are a diverse set of ethnicities at Supermicro. If six former employees think that Supermicro runs on Mandarin, I would have difficulty interacting there. Instead, all of my interactions with their product teams, executives, and marketing teams are in English. This type of insinuation on the cultural heritage of folks is completely uncalled for, especially when there are a large number of employees, including in executive ranks, that do not share that cultural heritage.

Here we have six former employees who Bloomberg used for interesting means. They did not confirm the hack. Instead, they were simply used in the article to paint a picture of their former employer in a light that would be unfavorable to Supermicro and supportive of Bloomberg’s propaganda storyline. Having six sources to tell you that a non-English language was spoken in a Silicon Valley company is about as earth-shattering as saying the sun will rise tomorrow. Bloomberg’s story never said its six Supermicro former employees saw any evidence of tampering. That is notable.

We will let our readers weigh the evidence to see if there is a pattern in Bloomberg’s sources. Next we wanted to give our final thoughts and discuss next steps.


  1. These Bloomberg guys are shady. I know this isn’t STH’s focus, but you’re doing a great job on this line and you’re the server expert. That first page was completely damning. There’s no way you can look at their statements dissected like that and say their story is completely true.

    If I wanted to read a fictional novel, the Bloomberg guys are better writers than you so there’s that.

  2. It’s refreshing to see a competent analysis. Bloomberg’s story is total BS and is a smear campaign.

    I design chips for a living. Your list of leading process companies that could do this should be shortened. Only TSMC, Intel, Samsung, and GloFo can be the sources of these chips for leading nodes. You’re right, they don’t have the die area in those packages to make these chips on 14nm+. You left out the critical element that they also need to cut the wafer, package the die so it can be used in manufacturing. That takes space that Bloomberg’s representation fails. Maybe you mention it, but there’s no way to make something that small today in 7nm let alone in 2015 in 14nm.

  3. I wouldn’t call this riveting, but your technical parts are spot on. I now think there’s no way Bloomberg is right here. An investigation must happen and heads at Bloomberg need to roll. Your first page alone shows that their editorial staff whiffed since you’re right. Drives aren’t on if the server is off. I didn’t catch that when I read theirs but it’s a good catch. Your BMC networking is simplistic, but it gets the point across. Every admin should know this.

  4. GREAT

    The TL;DR since this is forever long:

    p. 1 – Bloomberg got basic technical details flat wrong in its piece.
    p. 2 – Bloomberg f*d up simple stuff like keeping the BMC and CPU straight in their article.
    p. 3 – Bloomberg’s chip functionality, size, and rationale don’t make sense and there’s only 4 companies that could have produced the chip.
    p. 4 – Anyone Bloomberg has publicly relied on says they’re a bunch of confused individuals. The ex-Supermicro employees are used to paint an almost racist picture of the company. — I’m reading between the lines here but that’s the impression I got on my first read of the Bloomberg article too.
    p. 5 – SEC needs to investigate. Lawsuits need to happen. Bloomberg may end up as an Apple brand after this is over because they’re standing by a false piece.


  5. We’re only running about 100 servers. Setting up a dedicated management network is the first thing we do and everyone blocks egress on their management network. That’s spot on.

  6. Is coming from a different viewpoint or am I not reading this right? Their premise is that in order for the article to be correct, it must be 100% correct. I think Bloomberg has a collection of half truths.

  7. I didn’t see you include any verbiage on the BMC’s PECI connectivity to the cpu– that might be an interesting way of injecting code. For the record I do not believe this hardware hack is real, but the PECI angle is interesting.

  8. It sounded to me like Bloomberg were maybe referring to an attack on the boot code stored in a QSPI flash package. This would be something the BMC has access to in order to update (right?), and the CPU also has access in order to boot from. The limited number of pins and slower speed of SPI drastically reduces the HW requirements for an implant.

    I *know* that preventing attacks against firmware is a major concern amongst hyper-scale/cloud companies. See the recent NIST 800-193 “Platform Firmware Resiliency” spec.

    I’m not saying Bloomberg is right, just curious if the SPI boot ROM angle has been looked at.

  9. Seph I’ve done this on smaller boards. If you put something in a PCIE path you’ve got to reroute the PCB traces potentially through layers and moving other wires as well. PCIE traces have length requirements. So do RAM traces. There’s a picture of the RAM traces in the cover image to the article. If you’re looking at the zig zag pattern that’s to get the right trace lengths. This article could have done more explaining how hard it is to change anything in PCB. These server boards have many layers and are large. Signal integrity is a challenge.

    Isn’t ROM persistent not temporary memory? If it was a ROM attack, the Bberg article wouldn’t say temporary memory. I think they’re constraining themselves to the article’s description. Their first article on this says they believe hacks exist so I’m reading this one as only related to what’s described in the article.

  10. Also, if I were doing this the chip would not have flash, just a mask ROM with code and internal SRAM for data. Heck it might not even be a processor, it could just be a state machine primed to trigger on seeing a certain pattern. The payload would then be delivered from the on-chip ROM. Nothing about this requires a highly advanced node.

    FWIW I find Bloomberg’s reporting highly suspect, but this is an area of security that interests me.

  11. Too much reading after 5 pages Evan. PECI this is a better reference since they’ve showed Xeon systems of an unknown vintage

    It’d be a wild hack if that’s it as it doesn’t really sound like what Bloomberg’s saying. If it were, you’d say it was in the environmental control right? I’d have to think what’s possible there as I thought PECI even has ECC for signal integrity.

    This article touched on the issue with a simple hardware altering storage with low processing power. If you’re altering the flash chip it’s still storage not memory.

    It’s intriguing, but it isn’t what they described. I’d like to think we can all conceptualize types of hacks, but once they put it in writing, the time for concepts is over.

  12. Herein lies the issue. You’re trying to use logic and technical reasoning against a story that’s make to be anti-China and made for people that think being techno savvy means operating Face Time.

  13. I disagree with your analysis of Bloomberg’s inaccuracies, your analysis being inaccurate as well :
    – Assuming the BMC is compromised, you cannot prevent it from using the shared NIC. So if the shared NIC has egress connectivity, a compromised BMC can get egress connectivity. The BMC can also mimic the normal traffic to evade any kind of pattern-based detection. The only way to make sure BMC has no connectivity is to cut egress connectivity on the dedicated port AND the shared network port, period. Still, I assume those 30 companies would never give egress connectivity to any server.
    – Your point about accessing storage on “turned off” devices is moot. BMC can power the server on, do its thing, then turn the server off. No one will notice.

    You’re right about physical interception of the “temporary memory”. However, the BMC being connected to PCI-E, it can use DMA to e.g. change boot code in memory right after it was loaded from disk and before it gets executed.

    In the end, I believe you’re under-estimating the impact of a compromised BMC.

  14. Olivier if the server is off it is not on. You’re changing parameters if you say the BMC is turning it on. You’re also right that if Bloomberg had written their article differently, they may have been right, but it’s not clear. Once it is on, it isn’t off.

    We use Microblades and they’ve for 1G and 10G ports along with management. Nobody is using the onboard 1G ports for anything other than provisioning networks that don’t need egress either.

    Compromised BMC’s are an industry problem. I’d agree with you there. The more functions that you’d assume the hacking chip has, the more storage and processing power it needs making it less likely to be small.

  15. @Trevor Dedicated network cards won’t necessarily protect you because the BMC chip has DMA capability.

    It can also pre-empt firmware loading on the main CPU or modify ring 0/SMM/ME memory after boot so any traditional security (including. IOMMU) can be bypassed.

    The only commercially-available way I can think of is by combining a signed firmware image with TPM metrics and RAM encryption (AMD SEV/Intel SGX). Though the BMC can probably still intercept the traffic to TPM.

  16. “The implant was placed on the board in a way that allowed it to effectively edit this information queue, injecting its own code or altering the order of the instructions the CPU was meant to follow.”

    I’m not saying a BMC hack isn’t bad. The verbiage says that the implant itself not the BMC is doing the work in this line. This doesn’t say that the implant compromised the BMC which then works on the CPU.

    BMC hacks have been around for over a decade so it isn’t like people are failing to take precautions.

    If you’re doing BMC hack, you’re better off putting it on a USB and having it installed after manufacturing when it’s going through logistics to installation.

  17. Don’t know if Bloomberg’s article is fake or if the journalist didn’t get it, but if I wanted to do such attack, I would target the small (Q)SPI memory which stores the BIOS (it’s usually 1-8MB). Intercepting the BIOS loading and injecting couple of KB of memory in the microcode memory would be possible with a chip the size described in Bloomberg’s article.
    And once you are in the microcode, I don’t think there is anything you can’t do or access… but I’m no expert.
    A quick search shows it’s possible to fit 128KB in 1.5×1.5mm package:

  18. A direct system BIOS attack through SPI isn’t really going to happen right? They’re “capable of doing two very important things: telling the device to communicate with one of several anonymous computers elsewhere on the internet that were loaded with more complex code”
    Hitting the system BIOS to stop authentication checking, maybe that works, but you’re now going at the CPU not BMC. You’ve still got to go after the BMC first.

    Attacking the BMC’s flash storage might work, but you’ve also got to contend with the software images changing as new firmware gets released, signaling changes if you’re in the traces, and others. That USON8 is only 1.5mm but you’ve got to add in networking, a controller, and processing power. The linked USON8 is 1.5mm in 2018, not in 2015 and you’re talking about having more functionality not less in older generation manufacturing.

    This article missed the point that it’s going after the Linux OS on the CPU and the BMC. It’s also needing to download additional payload right? The more complexity you’ve got the less I can see this being made.

    Only way this works is if someone made a chip that attacked the BMC that would not get stuck after a firmware update. I know at least some companies have their own custom firmware, so if you’re attacking the firmware at a low level you’ve also got to get the firmware image. Cloud guys usually don’t use the full stock Supermicro or other firmware since they gut what they don’t need. You’ve also got to evade any firmware and OS checks that the cloud guys have. This article missed those points.
    They’d then need to get around typical egress issues. Then they’d hit a C&C server that would bring back code to push to the main server. For the DMA vector they’d need the server to boot after the C&C payload hit to attack the rest of the to get to a low level of access.

    You’re still better off with a USB drive that can just attack the flash at the end of factory testing or into logistics since there isn’t a trace and it’s faster to react to systems changes.

    If you go hardware, and some software part is altered, you’ve got sitting duck hardware for someone to investigate and that hardware can be obsolete. You’d then need to update your chips or re-fab. Motherboards also go through spins so you’d need to find a way to make it all work with different components.

    I don’t think this analysis is perfect, but it at least lets us all define just how narrow the opportunity to pull this off. If we’re thinking of this now, then the companies and government officials who Bloomberg says have known for years it’d be easy to find. If it was easy to find the recent post investigation Apple-Amazon-Supermicro statements are false.

    They still can’t read the most sensitive data on a server that’s turned off since SSD’s don’t have power. So the story’s still buggered there and the rest relies upon some really big leaps of faith of things going right for it to even work. Even putting on my tinfoil cap for this I’m wincing at how crazy those leaps are.

  19. For a server review site, and not a site that does this sort of content, pages 1,3-5 are pure gold. 2 you could have gone the SPI route but Bloomberg didn’t call it out so we’re all “just guessin’TM” here. I take pg.2 as it’s narrowing possibilities.

    Enough here that there’s no way Bloomberg is 100% right. I think they heard of some different attacks and tried piecing something together. There’s something to be said that they couldn’t write about it clearly enough or with keywords like DMA or SPI that we’re all not sure how it really worked.


  21. Great job STH. Excellent article, everything is nicely explained, even non-technical persons can understand what’s going on.
    I am actually really, really mad about all this. This is not the first time that Bloomberg is hurting other companies with bullshit stories. They should be shutdown immediately and thorough investigation should be carried out. Supermicro, Apple, Amazon and other companies that are suffering from this should sue Bloomberg and take everything from them.
    I am really pissed off!!! Isn’t it enough that we have real threats in IT world? We really don’t need this kind of stories going around.

  22. Who would have a financial or political interest in seeing technology stocks suddenly drop in value?

  23. Unlike the others, I like your analysis on 4 of the sources. Someone will trace and do better perhaps. Here’s my takeaway. If the Apple sources come forward, they’re going to have to contend with the investigation they know is going on now. Maybe the random web host can come forward. The only sources they’re using to support are government sources. They even cite an intelligence official who studied SM’s business model. What’s that job? Water cooler jockey?

    If it’s all supported by government officials leaking classified data, they go to jail if they’re named without air cover. That air cover from senior FBI and NSA says it isn’t real. So their bosses won’t give air cover. If someone comes forward now admitting to leaking classified data, that’s jail or a dig at their boss or both.

    You’ve also left out another salient point, there’s another 27 companies who were notified and not named. Where are their people coming out to support this?

    There’s too little detail in their article and they’re now on an island. We can all say it’s maybe possible, but Bloomberg said it happened and there’s some human side holes to fill now not just the technical parts.

  24. Only need this one question answered: Since it caused the SMCI stock to drop more than 40% in one day, is the related still hibernating with their paychecks automatically, directly deposited?

  25. While the original Bloomberg article isn’t great on details, I believe this chip as described is actually something that could exist and would actually be cheaper and easier to implement than most people think. While I have zero knowledge of the actual exploit as implemented, here is how I would implement it:

    The trick is to make the chip do as little as possible and be just a first stage bootloader for the exploit. All heavy processing and IO can be provided by the BMC. The BMC controller stores it’s firmware in an external SPI flash chip. Placing a custom chip on this SPI interface would allow for code injection to the BMC. While the firmware does change, the BMC really runs a full blown embedded Linux install. The boot process for Linux is fairly stable so rewriting a function or two early in the boot process to add additional functionality and changing the program’s vector table wouldn’t be that difficult and would have a very high chance of not changing for future firmware revisions.

    The injected code would really only need to serve one purpose. That would be to connect over the BMC’s network connection to the remote C&C to download a larger payload. While the dedicated BMC network port would be connected to a separate management network, the BMC has access to share one or more additional network interfaces on the server. This is used so IPMI can be used even if a separate network connection is not used. This is something that you can not get with a software IPMI exploit and the entire reason this attack would be worth doing in hardware.

    Once the BMC is taken over, it is possible to take over the rest of the system. Since the server is not designed to treat the BMC as a threat, it is able to essentially take complete control of the server. One of the interfaces provided by the BMC is a PCIe connection to the system. PCIe has built in DMI access. This would allow rewriting program data that the article referred to.

    Now how much would something like this cost to implement? A few hundred thousand dollars. By limiting the actual hardware to just being a bootloader for the rest of the exploit and hanging it off of a relatively speed and low pin count interface like SPI, it is possible to build the chip in an older cheaper process. Something like a 180nm process would be cheap to build the chip in and would allow adding enough logic and ROM storage for the exploit in a 1mm^2 package. Compared to the exploits listed in the leaked NSA’s ANT catalog, this really does not seem to be that far fetched and considering the capabilities afforded, the exploit actually seems very realistic.

  26. Andrew we’ve done work trying the same method and you’re greatly oversimplifying it. If you’re targeting these guys, there’s a whole host of custom things they do that you’d need access to their production HW+SW+FW before you’d be able to do the attack and it’ll be different for each customer. You’ve also missed the networking claimed and there’s no way you’re going to do this on 180nm in a 1mm^2 with all of the functions Bloomberg lists. Sorry.

    I think this story was a plant by Bloomberg to crowd source their way out of the problem. They’re trying to reach for anything to help them in litigation.

  27. Yes, I agree there is no way this chip implements it’s own hardware network connection. There is no chip you could build that small with integrated networking. The article stated “networking capability”. I don’t think this means hardware networking, but using the BMC’s existing network access to network with the C&C.

    There is also zero reason for the hardware to care about actual software running on the system. The exploit is entirely built into the BMC, so the only software that can change to defeat the chip is the BMC’s firmware. How many companies are writing their own BMC firmware for off the shelf Supermicro motherboards? Once the connection is established with the C&C, that is when a remote attacker can then exploit the rest of the system. Since they have full 2-way communication at this point, analyzing the running software on the server and exploiting it is much simpler.

  28. A tin-foil hat wearing coworker of mine suggested this chip could have “some other way of getting out without TCP/ never know, state-funded attacks can be very elaborate” and let’s say for a second that makes any sense. Everything comes down to pulses at some point. Couldn’t someone throw an oscilloscope or some other means of analysis on a network port and look for /some/ kind of activity? If this chip were real…in reality, it’d have to be reaching out to something via TCP/IP and any number of network traffic monitoring tools would have caught strange behavior, right?

  29. Comments based on what’s in the replies here:
    – supermicro has a feature for BIOS flashing (system off) via BMC
    – flashing the BIOS allows replacing the microcode
    – 1g interfaces are often connected.
    – supermicro is known to fall back to “shared mode” (plus, it’s configurable via OS)
    – OS can also re-flash the BMC (if one has the endurance to deal with the shitty tools)
    – BMCs crashes occur non-rarely once you got 1000s of systems. simply by normal bugs and issues. no way to detect malicious ones.
    – BMC networks might not have egress to the internet, but are usually routed somewhere (C&C internal)
    – BMC networks normally don’t surpress crosstalk, so side-stepping is not impossible.
    – In the Bloomberg illustration the implant sat on a pin of the SPI flash socket (empty in illustration) for the BMC. Since most non-crazy theories here lean towards modifying SPI flash (i barely know how a BMC boots, will not try to make it sound otherwise) just nudging the BMC boot would be sufficient.

    I forgot the rest I wrote before some ad triggered a page reload.

  30. Blather on all you like about what is possible and what is not when you don’t know the attack mechanism in detail. You can criticize others for being vague but you can’t fill it all in when the alternatives are nearly infinite.

    True hardware level attacks render all software and protocol defenses open to subversion. On the software side that is what makes root kits so difficult. Any fool who tries to say what are the limits of a root kit would be well advised to study the meaning of decidability (Halting Theorem). Hardware is interchangeable with software in frozen form until the electricity starts to flow in which case it is logically indistinguishable. Information and information processing is abstract not limited to only one physical embodiment. The rules remain the same for all cases.

    I attended an RSA lecture over a decade ago where it was shown a seemingly random one bit arithmetic error not likely to be detected could be used to defeat large key encryption. Once you can compromise at the hardware level the floodgates are open, including defeating all the means to detect it in software.

    What Bloomberg did not speculate on was the potential to tamper with CPU, GPU, and controller masks and resultant physical chips at the point of manufacturing. The threat is real and defenses virtually non-existent once the opponent has prior physical possession of the digital equipment. In China you have by far the most sophisticated and advanced cyber adversary on the planet. Americans including the NSA are drastically out matched. And the insiders know it.

    That should be pause for thought rather than trying to show how clever you can be in what didn’t happen without knowing what did happen.

  31. Rob DuWors, Andrew, Olivier, Evan, Seph – all spot on. This sth article views the matter as a server or network attack. Seen from an information view, or systems/knowledge/social/electronic/physical view, a hack such as the one described in Bloomberg’s story is par for a course in cyberwars.

    Apple, Amazon and others have rightly called the story untrue – because they, the hack party and everyone else knows that the target is not the consumer/business data that is stored/transacted in the servers of these cloud service providers; the target is the belief of consumers and businesses that tcp/ip and all that it has begotten today is secure/private. All nations have all the incentive to get the networked world to subside a bit. This particular case was probably an amateur/trial shot. We live in information times, constructed using hard and soft wares, and everything wonderful and obnoxious is possible cross-border as long as there is tcp/ip and transistors.

  32. What if there was a proof-of-concept board that the security experts were referring to and then Bloomberg exaggerated the story to say that the exploit was in actual retail products. I could see the Chinese creating a one-off board.

  33. At least one article I read alleged that the chip might manipulate the actual BMC firmware via I2C or JTAG, which are both low-pincount access methods. This would resolve the size and pin issue, but would probably make the chip much more detectable, since it would most likely screw up operations after the first BMC firmware update.

  34. …are registered Dimms connected to the BMC ? Why wouldn’t a memory controller be built into the buffer, to read contents of the memory and transfer back over the SMbus ?
    The Bloomerg article is full of incredible detail and still missing the obvious….Maybe its a waste of time to imagine how to interpret the fantasy into something practical…


Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.